Minireview Fluorescence lifetime , yield , energy transfer and spectrum in photosynthesis , 1950 – 1960 ∗

نویسنده

  • Steven Brody
چکیده

The fluorescence lifetime of chlorophyll a gives information about the primary photo-physical events in photosynthesis. Most of the light energy absorbed by chlorophylls is utilized for photochemistry. There are two main additional pathways competing for the absorbed light energy: fluorescence and radiationless internal conversion (heat). Only a few percent of the absorbed energy proceeds along these two pathways. This historical minireview focuses on the first direct measurements of the lifetime of chlorophyll fluorescence, the time it takes to transfer energy from phycoerythrin to chlorophyll a, and the discovery of the fluorescence band at 720 nm (F720; then attributed to a dimer of chlorophyll). These works were carried out during the the late 1950s to the early 1960s in the laboratory of Professor Eugene Rabinowitch at the University of Illinois, Urbana-Champaign [Brody (1995) Photosynth Res 43: 67–74].

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Augmenting light coverage for photosynthesis through YFP-enhanced charge separation at the Rhodobacter sphaeroides reaction centre

Photosynthesis uses a limited range of the solar spectrum, so enhancing spectral coverage could improve the efficiency of light capture. Here, we show that a hybrid reaction centre (RC)/yellow fluorescent protein (YFP) complex accelerates photosynthetic growth in the bacterium Rhodobacter sphaeroides. The structure of the RC/YFP-light-harvesting 1 (LH1) complex shows the position of YFP attachm...

متن کامل

Dynamic quenching in single photosystem II supercomplexes.

Photosystem II (PSII) is a huge pigment-protein supercomplex responsible for the primary steps of photosynthesis in green plants. Its light-harvesting antenna exhibits efficient transfer of the absorbed excitation energy to the reaction center and also contains a well-regulated protection mechanism against over-excitation in strong light conditions. The latter is based on conformational changes...

متن کامل

Energy migration alters the fluorescence lifetime of Cerulean: implications for fluorescence lifetime imaging Forster resonance energy transfer measurements.

Forster resonance energy transfer (FRET) is a physical phenomenon used to study molecular interactions in living cells. Changes in the fluorescence lifetime of proteins genetically tagged with a donor fluorophore, such as cyan fluorescent protein or Cerulean, are used to measure energy transfer to a protein tagged with an acceptor fluorophore (yellow fluorescent protein or Venus). Increased tra...

متن کامل

The Fluorescence Spectra of Red Algae and the Transfer of Energy from Phycoerythrin to Phycocyanin and Chlorophyll

1. The fluorescence spectra of the alga Porphyridium have been recorded as energy distribution curves for eleven different incident wave lengths of monochromatic incident light between wave lengths 405 and 546 mmicro. 2. In these spectra chlorophyll fluorescence predominates when the incident light is in the blue part of the spectrum which is strongly absorbed by chlorophyll. 3. For blue-green ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2002